Abstract

To support high speed transmission and traffic offloading from cellular networks, LTE-unlicensed (LTE-U) standard was proposed by 3GPP to enable cellular data transmission in unlicensed band. The primary challenge of LTE-U is to successfully coexist with the incumbent systems (e.g., WiFi networks) in the unlicensed bands, while still maintaining the quality-of-service (QoS) for LTE-A users. This paper proposes a new framework for implementing LTE-U standard based on deployed LTE-A infrastructure and cognitive radio (CR) technology to sense radio environment and construct a spectrum map, based on which the LTE-U system can perform joint power and channel allocation to maximize the overall system throughput. We introduce a spectrum map construction scheme and evaluate the Cramer-Rao bound of the scheme. It is shown that the original NP-hard joint power and channel allocation problem can be transformed into a linear programming problem for its solution. Simulation results verify that the proposed LTE-U scheme helps improve system throughput via access collision avoidance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.