Abstract

We synthesized and characterized a series of novel two-dimensional Se-atom-substituted donor (D)−π-acceptor (A) conjugated polymers—PBDTTTBO, PBDTTTBS, PBDTTSBO, PBDTSTBO, PBDTTSBS, PBDTSTBS, PBDTSSBO, and PBDTSSBS—featuring benzodithiophene (BDT) as the donor, thiophene (T) as the π-bridge, and 2,1,3-benzooxadiazole (BO) as the acceptor with different number of Se atoms at different π-conjugated locations, including the π-bridge, side chain, and electron-withdrawing units. We then systematically investigated the effect of different locations and the number of Se atoms in these two-dimensional conjugated polymers on the structural, optical, and electronics such as band-gap energies of the resulting polymers, as determined through quantum-chemical calculations, UV–vis absorption spectra, and grazing-incidence X-ray diffraction. We found that through the rational structural modification of the 2-D conjugated Se-substituted polymers the resulting PCEs could vary over 3-fold (from 2.4 to 7.6%), highlighting the importance of careful selection of appropriate chemical structures such as the location of Se atoms when designing efficient D−π-A polymers for use in solar cells. Among these tested BO-containing polymers, PBDTSTBO that has moderate band gaps and good open-circuit voltages (up to 0.86 V) when mixed with PC71BM (1:2, w/w) provided the highest power conversion efficiency (7.6%) in a single-junction polymer solar cell, suggesting that these polymers have potential applicability as donor materials in the bulk heterojunction polymer solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call