Abstract
This study addresses a facility location and task allocation problem of a two-echelon supply chain against stochastic demand. Decisions include locating a number of factories among a finite set of potential sites and allocating task assignment between factories and marketplaces to maximize profit. The study represents the addressed location–allocation problem by bi-level stochastic programming and develops a genetic algorithm with efficient greedy heuristics to solve the problem. The contribution of the study pivots on a formal representation of system configuration design and operations optimization for a two-echelon supply chain. The proposed solution algorithm can find near optimal solution while consuming less computational time for large-size problems as compared to an optimization-based tool. In addition, this study investigates the industrial-cluster effect in a two-echelon supply chain by using the proposed algorithm. Experiments reveal that the proposed algorithm can efficiently yield nearly optimal solutions against stochastic demands.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.