Abstract

In this study, for the problem of estimating the location and speed of a moving target in the non-coherent multiple-input multiple-output (MIMO) radar systems with widely separated antennas, the authors propose two new methods, in which the parameters used are the joint of bearing, elevation, frequency-of-arrival (FOA) and time-of-arrival (TOA). The two proposed methods are based on non-coherent MIMO radar systems, but method 1 centralises all measuring parameters in one linear equation and processes together, while method 2 divides the measurements into several groups according to the different transmitter-receiver pairs. In this study, the authors assume that bearing, elevation, FOA and TOA parameters have already been measured by a preprocessing algorithm. For the both methods, an initial guess is acquired through a best linear unbiased estimator. Then for method 1, a more explicit solution can be acquired by employing a maximum likelihood estimator for decorrelation, while the method 2 applies maximum likelihood estimation of a first-order Taylor expansion for a better solution. The simulations show that these two methods are effective and both of them can attain to Cramer-Rao lower bound at sufficiently moderate noise conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call