Abstract
Action recognition is essential in security monitoring, home care, and behavior analysis. Traditional solutions usually leverage particular devices, such as smart watches, infrared/visible cameras, etc. These methods may narrow the application areas due to the risk of privacy leakage, high equipment cost, and over/under-exposure. Using wireless signals for motion recognition can effectively avoid the above problems. However, the motion recognition technology based on Wi-Fi signals currently has some defects, such as low resolution caused by narrow signal bandwidth, poor environmental adaptability caused by the multi-path effect, etc., which make it hard for commercial applications. To solve the above problems, we first propose and implement a position adaptive motion recognition method based on Wi-Fi feature enhancement, which is composed of an enhanced Wi-Fi features module and an enhanced convolution Transformer network. Meanwhile, we improve the generalization ability in the signal processing stage to avoid building an extremely complex model and reduce the demand for system hardware. To verify the generalization of the method, we implement real-world experiments using 9300 network cards and the PicoScenes software platform for data acquisition and processing. By contrast with the baseline method using original channel state information(CSI) data, the average accuracy of our algorithm is improved by 14% in different positions and over 16% in different orientations. Meanwhile, our method has best performance with an accuracy of 90.33% compared with the existing models on public datasets WiAR and WiDAR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.