Abstract

Accurate and low-cost sensor localization is a critical requirement for the deployment of wireless sensor networks in a wide variety of applications. In cooperative localization, sensors work together in a peer-to-peer manner to make measurements and then forms a map of the network. Various application requirements influence the design of sensor localization systems. In this article, the authors describe the measurement-based statistical models useful to describe time-of-arrival (TOA), angle-of-arrival (AOA), and received-signal-strength (RSS) measurements in wireless sensor networks. Wideband and ultra-wideband (UWB) measurements, and RF and acoustic media are also discussed. Using the models, the authors have shown the calculation of a Cramer-Rao bound (CRB) on the location estimation precision possible for a given set of measurements. The article briefly surveys a large and growing body of sensor localization algorithms. This article is intended to emphasize the basic statistical signal processing background necessary to understand the state-of-the-art and to make progress in the new and largely open areas of sensor network localization research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call