Abstract
The paper reports on ongoing developmental research efforts to adapt the instructional design perspective of Realistic Mathematics Education (RME) to the learning and teaching of collegiate mathematics, using differential equations as a specific case. This report focuses on the RME design heuristic of guided reinvention as a means to locate a starting point for an instructional sequence for first-order differential equations and highlights the cyclical process instructional design and analysis of student learning. The instance of starting with a rate of change equation as an experientially real mathematical context is taken as a case for illustrating how university students might experience the creation of mathematical ideas. In particular, it is shown how three students came to reason conceptually about rate and in the process, develop their own informal Euler method for approximating solution functions to differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Mathematical Education in Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.