Abstract

Compared to technical infrastructure, nature-based solutions (NBS) strive to work with nature and to move beyond business-as-usual practices. Despite decades of research from various academia fields and a commencing mainstreaming of the term, a lack of cohesiveness and pertinent methods regarding the subject matter hinders further implementation. Using a functional landscape approach, this paper aims to identify the spatial extent of existing and potential NBS locations and applies it across a case study in Germany. Inspired by hydrological models, which work with delineated hydrological response units, this research instead defines hydromorphological landscape units (HLU) based on biophysical spatial criteria to identify the potential areas that could function as NBS. This approach was tested for floodplain-based NBS. The identified HLU were then compared with historical floodplain and land-use data to differentiate between active or potential NBS. The spatial delineation identified 3.6 million hectares of already active floodplains areas, for which we recommend continued or modified protection measures, and 0.4 million ha where the hydromorphological conditions are apt to support floodplains, yet are cut-off from the flooding regime and require rehabilitation measures. The identification of NBS through explicitly defined HLU serves as a spatial approach to support NBS implementation. Taken together, our research can provide an essential contribution to systemize the emerging scholarship on NBS in river landscapes and to help in selecting and planning appropriate NBS in practice.

Highlights

  • In many regions of Europe, efforts to support transitions of the river landscape towards more sustainable pathways face dramatic land- and water-borne challenges

  • The aim of this paper is to spatially identify existing and potential locations for nature-based solutions (NBS) using a hydrological landscape units (HLU) approach applied to a river basin in Central Germany

  • Modelling the Extent of Floodplains through hydromorphological landscape units (HLU) is comprised which can be considered as floodplain

Read more

Summary

Introduction

In many regions of Europe, efforts to support transitions of the river landscape towards more sustainable pathways face dramatic land- and water-borne challenges. Established key direct drivers of river degradation are infrastructure development, land conversion, water withdrawal, eutrophication and pollution, overharvesting and overexploitation, and the introduction of invasive alien species [1]. Recommendations emphasize that in order to diminish water-stressors and promote rehabilitation efforts in highly impacted areas, integrative strategies instead of the current fragmentary approaches to management must be replaced [2,3]. Said, actions for rivers that offer multiple positive benefits for humans and nature must become the mainstream option. Nature-based solutions, commonly known as NBS, have been coined to encompass the solutions available that provide opportunities for alleviating water-related challenges. NBS are considered to be “interventions which use nature and the natural functions . . . to tackle some of the most pressing

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.