Abstract

With ongoing advances in hardware and software, the bottleneck in linear programming is no longer a model solution, it is the correct formulation of large models in the first place. During initial formulation (or modification), a very large model may prove infeasible, but it is often difficult to determine how to correct it. We present a formulation aid which analyzes infeasible LPs and identifies minimal sets of inconsistent constraints from among the perhaps very large set of constraints defining the problem. This information helps to focus the search for a diagnosis of the problem, speeding the repair of the model. We present a series of filtering routines and a final integrated algorithm which guarantees the identification of at least one minimal set of inconsistent constraints. This guarantee is a significant advantage over previous methods. The algorithms are simple, relatively efficient, and easily incorporated into standard LP solvers. Preliminary computational results are reported. INFORMS Journal on Computing, ISSN 1091-9856, was published as ORSA Journal on Computing from 1989 to 1995 under ISSN 0899-1499.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.