Abstract

Hybrid gas turbine–solid oxide fuel cell power generation has the potential to create a positive economic and environmental impact. Annually, the U.S. spends over $235 billion on electricity, and electric utilities emit 550 million metric tons of carbon. The integration of distributed hybrid generation can reduce these emissions and costs through increased efficiencies. In this paper, a model is presented that minimizes the costs of distributed hybrid generation while optimally locating the units within the existing electric infrastructure. The model utilizes data from hybrid generation modules, and includes uncertainty in customer demand, weather, and fuel costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.