Abstract

This paper builds a Near-Field Communication (NFC) based localization system that allows ordinary surfaces to locate surrounding objects with high accuracy in the near-field. While there is rich prior work on device-free localization using far-field wireless technologies, the near-field is less explored. Prior work in this space operates at extremely small ranges (a few centimeters), leading to designs that sense close proximity rather than location. We propose TextileSense, a near-field beamforming system that can track everyday objects made of conductive materials (for example, a human hand) even if they are a few tens of centimeters away. We use multiple flexible NFC coil antennas embedded in ordinary and irregularly shaped surfaces we interact with in smart environments---furniture, carpets, and so forth. We design and fabricate specialized textile coils woven into the fabric of the furniture and easily hidden by acrylic paint. We then develop a near-field blind beam-forming algorithm to efficiently detect surrounding objects, and use a data-driven approach to further infer their location. A detailed experimental evaluation of TextileSense shows an average accuracy of 3.5 cm in tracking the location of objects of interest within a few tens of centimeters from the furniture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.