Abstract

BackgroundWe applied stochastic search variable selection (SSVS), a Bayesian model selection method, to the simulated data of Genetic Analysis Workshop 13. We used SSVS with the revisited Haseman-Elston method to find the markers linked to the loci determining change in cholesterol over time. To study gene-gene interaction (epistasis) and gene-environment interaction, we adopted prior structures, which incorporate the relationship among the predictors. This allows SSVS to search in the model space more efficiently and avoid the less likely models.ResultsIn applying SSVS, instead of looking at the posterior distribution of each of the candidate models, which is sensitive to the setting of the prior, we ranked the candidate variables (markers) according to their marginal posterior probability, which was shown to be more robust to the prior. Compared with traditional methods that consider one marker at a time, our method considers all markers simultaneously and obtains more favorable results.ConclusionsWe showed that SSVS is a powerful method for identifying linked markers using the Haseman-Elston method, even for weak effects. SSVS is very effective because it does a smart search over the entire model space.

Highlights

  • We applied stochastic search variable selection (SSVS), a Bayesian model selection method, to the simulated data of Genetic Analysis Workshop 13

  • Genetic Analysis Workshop 13 provided information that the disease genes are located on chromosomes 7(s7), 15(s8), and 21(s9), respectively, and that the gene on chromosome 21(s9) only affects cholesterol rate in the females, i.e., it interacts with gender

  • Impractical to track the complete posterior of γ, only the marginal posterior of each marker is obtained. Both posterior probability of the models and marginal probabilities of each marker are sensitive to the prior settings, especially c and p, we showed that the ranking of the marginal posterior of the markers are not

Read more

Summary

Introduction

We applied stochastic search variable selection (SSVS), a Bayesian model selection method, to the simulated data of Genetic Analysis Workshop 13. We used SSVS with the revisited Haseman-Elston method to find the markers linked to the loci determining change in cholesterol over time. To study gene-gene interaction (epistasis) and gene-environment interaction, we adopted prior structures, which incorporate the relationship among the predictors. This allows SSVS to search in the model space more efficiently and avoid the less likely models. Suh et al [2] applied Stochastic Search Variable Selection (SSVS), a Bayesian variable selection method proposed by (page number not for citation purposes)

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.