Abstract

In rotor walk on a finite directed graph, the exits from each vertex follow a prescribed periodic sequence. Here we consider the case of rotor walk where a particle starts from a designated source vertex and continues until it hits a designated target set, at which point the walk is restarted from the source. We show that the sequence of successively hit targets, which is easily seen to be eventually periodic, is in fact periodic. We show moreover that reversing the periodic patterns of all rotor sequences causes the periodic pattern of the hitting sequence to be reversed as well. The proofs involve a new notion of equivalence of rotor configurations, and an extension of rotor walk incorporating time-reversed particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.