Abstract
The requirements for high performance and low energy consumption call for novel light-weight high-temperature structural materials. A possible answer can be intermetallic γ-TiAl-based alloys, which—in terms of weight—clearly outperform the classical Ni based alloys. However, not only their mechanical properties, such as high specific strength and high creep resistance, are important for device design and use, but also their electrical behavior is of significant importance. In order to correctly interpret the results of electrical material testing techniques, such as eddy current testing, a profound knowledge on the electrical properties is essential. In this study, local-probe techniques, such as conductive atomic force microscopy (CAFM) and micro four-point probe (μ4PP) measurements, were used to determine the specific resistivity of the constituent phases of a Ti-43.5Al-4Nb-1Mo-0.1B (at. %) TNM γ-TiAl based alloy. It turned out that the different phases exhibit noticeably different resistivity values, which vary over two orders of magnitude, whereas the βo phase has the smallest resistivity and the α2 phase the highest. CAFM and μ4PP results were in rather good agreement for the α2 and γ phases with resistivity values of ρα2,CAFM = (1.0 ± 0.7) × 10−5 Ω m and ρα2,4PP = (1.5 ± 1.5) × 10−5 Ω m for the α2-phase, and ργ,CAFM = (6.5 ± 2.1) × 10−6 Ω m, and ργ,4PP = (1.4 ± 1.2) × 10−6 Ω m for the γ-phase. For the βo phase, μ4PP measurements resulted in ρβo,4PP = (9.0 ± 5.0) × 10−7 Ω m. In this case, CAFM values are not reliable due to the formation of a contact barrier that deteriorates the measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.