Abstract
Land use regression (LUR) models are one of the standard methods for estimating air pollution concentration in urban areas. These models are usually low accurate due to inappropriate stochastic models (weight matrix). Furthermore, the measurement or modeling of dependent and independent variables used in LUR models is affected by various errors, which indicates the need to use an efficient stochastic and functional model to achieve the best estimation. This study proposes a locally weighted total least-squares variance component estimation (LW-TLS-VCE) for modeling urban air pollution. In the proposed method, in the first step, a locally weighted total least-squares (LW-TLS) regression is developed to simultaneously considers the non-stationary effects and errors of dependent and independent variables. In the second step, the variance components of the stochastic model are estimated to achieve the best linear unbiased estimation of unknowns. The efficiency of the proposed method is evaluated by modeling PM2.5 concentrations via meteorological, land use, and traffic variables in Isfahan, Iran. The benefits provided by the proposed method, including considering non-stationary effects and random errors of all variables, besides estimating the actual variance of observations, are evaluated by comparing four consecutive methods. The obtained results demonstrate that using a suitable stochastic and functional model will significantly increase the proposed method's efficiency in PM2.5 modeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.