Abstract
An adaptive robot control approach that can achieve an accurate approximation of the complex robot dynamics without knowledge unlearning in the case of multiple sequential tasks is proposed in this article. A locally weighted learning (LWL) model with automatic structure growth according to the size of the learning domain is introduced to approximate unknown robot dynamics, and a composite learning technique with regressor extension is applied to improve parameter convergence. The LWL ensures that learning in one area of the learning domain does not cause unlearning in another area, and the composite learning theoretically guarantees the identification performance of the LWL model. By the exploitation of both stored data in memory and instantaneous data, parameter convergence in the LWL model is achieved under a more achievable interval-excitation condition than the stringent persistent-excitation condition. This further enhances the trajectory tracking performance for multiple sequential tasks, which is generally not achievable by existing approximation-based adaptive robot control approaches. Experimental studies have verified the superiority of the proposed approach over prevalent approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.