Abstract
Censored quantile regression offers a valuable supplement to Cox proportional hazards model for survival analysis. Existing work in the literature often requires stringent assumptions, such as unconditional independence of the survival time and the censoring variable or global linearity at all quantile levels. Moreover, some of the work uses recursive algorithms, making it challenging to derive asymptotic normality. To overcome these drawbacks, we propose a new locally weighted censored quantile regression approach that adopts the redistribution-of-mass idea and employs a local reweighting scheme. Its validity only requires conditional independence of the survival time and the censoring variable given the covariates, and linearity at the particular quantile level of interest. Our method leads to a simple algorithm that can be conveniently implemented with R software. Applying recent theory of M-estimation with infinite dimensional parameters, we establish the consistency and asymptotic normality of the proposed estimator. The proposed method is studied via simulations and is illustrated with the analysis of an acute myocardial infarction dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.