Abstract
Cyclic linear codes of block length n over a finite field F/sub q/ are linear subspaces of F/sub q//sup n/ that are invariant under a cyclic shift of their coordinates. A family of codes is good if all the codes in the family have constant rate and constant normalized distance (distance divided by block length). It is a long-standing open problem whether there exists a good family of cyclic linear codes. A code C is r-testable if there exists a randomized algorithm which, given a word x/spl isin//sub q//sup n/, adaptively selects r positions, checks the entries of x in the selected positions, and makes a decision (accept or reject x) based on the positions selected and the numbers found, such that 1) if x/spl isin/C then x is surely accepted; ii) if dist(x,C) /spl ges/ /spl epsi/n then x is probably rejected. (dist refers to Hamming distance.) A family of codes is locally testable if all members of the family are r-testable for some constant r. This concept arose from holographic proofs/PCP's. Recently it was asked whether there exist good, locally testable families of codes. In this paper the intersection of the two questions stated is addressed. Theorem. There are no good, locally testable families of cyclic codes over any (fixed) finite field. In fact the result is stronger in that it replaces condition ii) of local testability by the condition ii') if dist (x,C) /spl ges/ /spl epsi/n then x has a positive chance of being rejected. The proof involves methods from Galois theory, cyclotomy, and diophantine approximation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.