Abstract

We propose locally-symplectic neural networks LocSympNets for learning the flow of phase volume-preserving dynamics. The construction of LocSympNets stems from the theorem of the local Hamiltonian description of the divergence-free vector field and the splitting methods based on symplectic integrators. Symplectic gradient modules of the recently proposed symplecticity-preserving neural networks SympNets are used to construct invertible locally-symplectic modules, which compositions result in volume-preserving neural networks LocSympNets. To further preserve properties of the flow of a dynamical system LocSympNets are extended to symmetric locally-symplectic neural networks SymLocSympNets, such that the inverse of SymLocSympNets is equal to the feed-forward propagation of SymLocSympNets with the negative time step, which is a general property of the flow of a dynamical system. LocSympNets and SymLocSympNets are studied numerically considering learning linear and nonlinear volume-preserving dynamics. In particular, we demonstrate learning of linear traveling wave solutions to the semi-discretized advection equation, periodic trajectories of the Euler equations of the motion of a free rigid body, and quasi-periodic solutions of the charged particle motion in an electromagnetic field. LocSympNets and SymLocSympNets can learn linear and nonlinear dynamics to a high degree of accuracy even when random noise is added to the training data. In all numerical experiments, SymLocSympNets have produced smaller errors in long-time predictions compared to the LocSympNets. When learning a single trajectory of the rigid body dynamics locally-symplectic neural networks can learn both quadratic invariants of the system with absolute relative errors below 1%. In addition, SymLocSympNets produce qualitatively good long-time predictions, when the learning of the whole system from randomly sampled data is considered. LocSympNets and SymLocSympNets can produce accurate short-time predictions of quasi-periodic solutions, which is illustrated in the example of the charged particle motion in an electromagnetic field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.