Abstract

We suggest a geometrical approach to the semi-invariants of quivers based on Luna's slice theorem and the Luna-Richardson theorem. The locally semi-simple representations are defined in this spirit but turn out to be connected with stable representations in the sense of GIT, Schofield's perpendicular categories, and Ringel's regular representations. As an application of this method we obtain an independent short proof of a theorem of Skowronski and Weyman about semi-invariants of the tame quivers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.