Abstract

This study develops a GARCH-type model, i.e., the variance-gamma GARCH (VG GARCH) model, based on the two major strands of option pricing literature. The first strand of the literature uses the variance-gamma process, a time-changed Brownian motion, to model the underlying asset price process such that the possible skewness and excess kurtosis on the distributions of asset returns are considered. The second strand of the literature considers the propagation of the previously arrived news by including the feedback and leverage effects on price movement volatility in a GARCH framework. The proposed VG GARCH model is shown to obey a locally risk-neutral valuation relationship (LRNVR) under the sufficient conditions postulated by Duan (1995). This new model provides a unified framework for estimating the historical and risk-neutral distributions, and thus facilitates option pricing calibration using historical underlying asset prices. An empirical study is performed comparing the proposed VG GARCH model with four competing pricing models: benchmark Black–Scholes, ad hoc Black–Scholes, normal NGARCH, and stochastic volatility VG. The performance of the VG GARCH model versus these four competing models is then demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.