Abstract
In this work we treat fMRI data analysis as a spatiotemporal system identification problem and address issues of model formulation, estimation, and model comparison. We present a new model that includes a physiologically based hemodynamic response and an empirically derived low-frequency noise model. We introduce an estimation method employing spatial regularization that improves the precision of spatially varying noise estimates. We call the algorithm locally regularized spatiotemporal (LRST) modeling. We develop a new model selection criterion and compare our model to the SPM-GLM method. Our findings suggest that our method offers a better approach to identifying appropriate statistical models for fMRI studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.