Abstract

A code over a finite alphabet is called locally recoverable (LRC code) if every symbol in the encoding is a function of a small number (at most r) of other symbols of the codeword. In this paper, we introduce a construction of LRC codes on algebraic curves, extending a recent construction of the Reed-Solomon like codes with locality. We treat the following situations: local recovery of a single erasure, local recovery of multiple erasures, and codes with several disjoint recovery sets for every coordinate (the availability problem). For each of these three problems we describe a general construction of codes on curves and construct several families of LRC codes. We also describe a construction of codes with availability that relies on automorphism groups of curves. We also consider the asymptotic problem for the parameters of the LRC codes on curves. We show that the codes obtained from asymptotically maximal curves (for instance, Garcia-Stichtenoth towers) improve upon the asymptotic versions of the Gilbert-Varshamov bound for LRC codes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.