Abstract

Current practice in Quantitative Structure Activity Relationship (QSAR) methods usually involves generating a great number of chemical descriptors and then cutting them back with variable selection techniques. Variable selection is an effective method to reduce the dimensionality but may discard some valuable information. This paper introduces Locally Linear Embedding (LLE), a local non-linear dimensionality reduction technique, that can statistically discover a low-dimensional representation of the chemical data. LLE is shown to create more stable representations than other non-linear dimensionality reduction algorithms, and to be capable of capturing non-linearity in chemical data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.