Abstract

Diffusion geometry techniques are useful to classify patterns and visualize high-dimensional datasets. Building upon ideas from diffusion geometry, we outline our mathematical foundations for learning a function on high-dimension biomedical data in a local fashion from training data. Our approach is based on a localized summation kernel, and we verify the computational performance by means of exact approximation rates. After these theoretical results, we apply our scheme to learn early disease stages in standard and new biomedical datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.