Abstract
This thesis is concerned with the full discretization of Maxwell's equations in cases where the spatial discretization has to be carried out with a locally refined grid. In such situations locally implicit time integrators are an appealing choice for the time discretization since they overcome the grid-induced stiffness of these problems. We analyze such a locally implicit time integrator in the case where the space discretization stems from a central fluxes discontinuous Galerkin method. In fact, we prove its stability under a CFL condition which solely depends on the coarse part of the spatial grid and give a rigorous error analysis showing that the integrator is second order convergent. Moreover, we extend this time integrator so that it can be applied to an upwind fluxes discontinuous Galerkin space discretization. We show that this novel integrator preserves the second order temporal convergence and that it inherits the improved properties of an upwind fluxes discretization (better stability, higher spatial convergence rate) compared to the central fluxes case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.