Abstract

A group G is said to be locally graded if every nontrivial, finitely generated subgroup of G has a nontrivial finite image. Every group can occur as a quotient of a locally graded group. It is shown that the largest subgroup and quotient closed interior of the class of locally graded groups is the class of groups in which every simple quotient of every finitely generated subgroup is finite. This article investigates conditions under which a given quotient of a locally graded group is locally graded, and the result is used to get more precise condition for a quotient of a linear group to be locally graded.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.