Abstract

AbstractWe investigate Martian ultralow frequency (ULF) electromagnetic waves generated by local plasma instabilities below the Martian bow shock. Recent Mars Atmosphere and Volatile EvolutioN (MAVEN) observations have shown that ULF waves generated upstream of the Martian bow shock can propagate down to the upper ionosphere, possibly facilitating heavy ion escape from Mars by heating the ionospheric plasma. In contrast to the upstream waves oscillating near the upstream proton cyclotron frequency, we identify narrow band ULF magnetic field fluctuations with frequencies near the local proton cyclotron frequency (fcp(local)) from MAVEN data. In addition to expected proton cyclotron waves locally generated in the magnetosheath, we newly identify compressional narrow band emissions near fcp(local) (and its harmonics for some cases) in the dayside upper ionosphere and in the nightside magnetotail. The dayside waves are preferentially observed for high solar extreme ultraviolet (EUV) conditions and are often associated with ring/shell‐like, hot protons of magnetosheath origin in the presence of cold, dense ionospheric protons. The nightside waves exhibit distinct preference for high‐solar‐EUV, strong‐solar‐wind conditions, under which both warm and cold protons are enhanced. The observed properties of these compressional waves are generally consistent with a proton Bernstein mode instability driven by a positive perpendicular slope in proton velocity distribution functions. The excited waves can cause perpendicular heating of thermal protons, thereby transferring energy from precipitating hot protons to cold ionospheric protons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.