Abstract

A group is said to have finite (special) rank ≤sif all of its finitely generated subgroups can be generated byselements. LetGbe a locally finite group and suppose thatH/HGhas finite rank for all subgroupsHofG, whereHGdenotes the normal core ofHinG. We prove that thenGhas an abelian normal subgroup whose quotient is of finite rank (Theorem 5). If, in addition, there is a finite numberrbounding all of the ranks ofH/HG, thenGhas an abelian subgroup whose quotient is of finite rank bounded in terms ofronly (Theorem 4). These results are based on analogous theorems on locally finitep-groups, in which case the groupGis also abelian-by-finite (Theorems 2 and 3).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.