Abstract

This paper brings together two apparently unrelated results about locally compact groups G by giving them a common proof. The first concerns the number of topologically left invariant means on L ∞ ( G ), while the second states that the topological centre of the largest semigroup compactification of G is simply G itself. On the way, we introduce as vital tools some new compactifications of the half line ([0, ∞), +), we produce a right invariant pseudometric on a compactly generated G for which the bounded sets are precisely the relatively compact sets, and we receive striking confirmation that some algebraic properties of semigroups can be transferred by maps which are quite far from being homomorphisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.