Abstract

Bistable bidomains have been used to give a simple order-theoretic construction of a cartesian closed category of sequential functions. In this paper, we investigate the intensional properties of a full subcategory, the locally boolean domains, in which the bistable structure is given by an involution operation. We show that every pointed locally boolean domain is the limit of an ω -chain of “prenex normal forms” constructed using only products and lifted sums. We use this result to describe a model of linear logic (incorporating both intuitionistic and polarized classical fragments). We show that affine and bistable functions correspond to unique “strategies” on the associated normal forms, and that function composition corresponds to “parallel composition plus hiding” of these strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.