Abstract

Two-dimensional (2D) layered photocatalysts with highly ordered out-of-plane symmetry usually display robust excitonic effects, thus being ineffective in driving catalytic reactions that necessitate unchained charge carriers. Herein, taking 2D BiOBr as a prototype model, we implement a superficial asymmetric [Br-Bi-O-Bi] stacking in the out-of-plane direction by selectively stripping off the top-layer Br of BiOBr. This local asymmetry disrupts the diagnostic confinement configuration of BiOBr to urge energetic exciton dissociation into charge carriers and further contributes to the emergence of a surface dipole field that powers the subsequent separation of transient electron-hole pairs. Distinct from the symmetric BiOBr, which activates O2 into 1O2 via an exciton-mediated energy transfer, surface asymmetric BiOBr favors selective O2 activation into ·O2- for a broad range of amine-to-imine conversions. Our work here not only presents a paradigm for asymmetric photocatalyst design but also expands the toolkit available for regulating exciton behaviors in semiconductor photocatalytic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.