Abstract

Pre-attentive deviance detection in the visual environment has been known to be reflected by an event-related brain potential (ERP) component, deviant-related negativity. Recently, however, we demonstrated that deviant-related negativity comprises two, temporally and spatially overlapping ERP components, by using an experimental protocol consisting of oddball and equiprobable sequences [M. Kimura, J. Katayama, H. Ohira, E. Schröger, Visual mismatch negativity: new evidence from the equiprobable paradigm, Psychophysiology 46 (2009) 402–409]: (1) visual N1 that reflects a sensory, refractoriness-based deviance detection system and (2) visual mismatch negativity (MMN) that reflects a cognitive, memory-comparison-based deviance detection system. In the present paper, we further elucidated the neural generators of the visual N1 and visual MMN with standardized low-resolution brain electromagnetic tomography (sLORETA). Results showed that the visual N1 was involved in neural activations of the primary and nonprimary visual areas, while the visual MMN was involved in neural activations of the nonprimary visual areas and the prefrontal areas. These results suggest that the sensory and cognitive deviance detection systems subserved by distinct neural structures underlie our efficient pre-attentive visual deviance detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call