Abstract

Identifying genomic locations that have experienced selective sweeps is an important first step toward understanding the molecular basis of adaptive evolution. Using statistical methods that account for the confounding effects of population demography, recombination rate variation, and single-nucleotide polymorphism ascertainment, while also providing fine-scale estimates of the position of the selected site, we analyzed a genomic dataset of 1.2 million human single-nucleotide polymorphisms genotyped in African-American, European-American, and Chinese samples. We identify 101 regions of the human genome with very strong evidence (p < 10−5) of a recent selective sweep and where our estimate of the position of the selective sweep falls within 100 kb of a known gene. Within these regions, genes of biological interest include genes in pigmentation pathways, components of the dystrophin protein complex, clusters of olfactory receptors, genes involved in nervous system development and function, immune system genes, and heat shock genes. We also observe consistent evidence of selective sweeps in centromeric regions. In general, we find that recent adaptation is strikingly pervasive in the human genome, with as much as 10% of the genome affected by linkage to a selective sweep.

Highlights

  • Describing how natural selection shapes patterns of genetic variation within and between species is critical to a general understanding of evolution

  • When a selective sweep occurs, it leaves a characteristic signal in patterns of variation in genomic regions linked to the selected site; recently released population genomic datasets can be used to search for instances of molecular adaptation

  • We present a comprehensive scan for complete selective sweeps in the human genome

Read more

Summary

Introduction

Describing how natural selection shapes patterns of genetic variation within and between species is critical to a general understanding of evolution. If one can localize adaptive events in the genome, this information, along with functional knowledge of the region, speaks to the selective environment experienced by recent human populations. Another reason for the interest in genomic patterns of selection is that recent studies [3,5] have suggested a link between selected genes and factors causing inherited disease; several established cases of recent adaptive evolution in the human genome involve mutations that confer resistance to infectious disease (e.g., [7,8]).

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.