Abstract

This work assesses the performance of seven exchange–correlation functionals (some with and some without a Hubbard U correction) for their ability (i) to predict band gaps of silicon, diamond, and Li-ion battery cathode materials, (ii) to localize hole polarons and predict delithiation energies in Li-ion battery cathode materials, and (iii) to predict transition levels of charge carriers of doped silicon and diamond. Both local and hybrid exchange–correlation functionals were tested. The local functionals tend to underestimate band gaps and delocalize polarons. The hybrid functionals very often give a good description of both properties, but they may not be practical for calculations involving large unit cells, large ensembles, or dynamics, and therefore a local functional with a Hubbard U correction is often used (giving the method called DFT+U), where the value of a parameter U is adjusted according to the system and the property being investigated. Keeping in mind the importance of computational cost a...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.