Abstract
Traditional post-disaster assessment of damage heavily relies on expensive geographic information system (GIS) data, especially remote sensing image data. In recent years, social media have become a rich source of disaster information that may be useful in assessing damage at a lower cost. Such information includes text (e.g., tweets) or images posted by eyewitnesses of a disaster. Most of the existing research explores the use of text in identifying situational awareness information useful for disaster response teams. The use of social media images to assess disaster damage is limited. We have recently proposed a novel approach, based on convolutional neural networks and class activation mapping, to locate building damage in a disaster image and to quantify the degree of the damage. In this paper, we study the usefulness of the proposed approach for other categories of infrastructure damage, specifically bridge and road damage, and compare two-class activation mapping approaches in this context. Experimental results show that our proposed approach enables the use of social network images for post-disaster infrastructure damage assessment and provides an inexpensive and feasible alternative to the more expensive GIS approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Social Network Analysis and Mining
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.