Abstract
The pattern formation in a magnetic wire forced by a transversal uniform and oscillatory magnetic field is studied. This system is described in the continuous framework by the Landau-Lifshitz-Gilbert equation. We find numerically that, the spatio-temporal magnetization field exhibits a family of localized states that connect asymptotically a uniform oscillatory state with an extended wave. Close to parametrical resonance instability, an amended amplitude equation is derived, which allows us to understand and characterize these localized waves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.