Abstract

We consider a body, homogeneous or periodic, equipped with a structure composed of dynamic inhomogeneities uniformly distributed along a line, and study free and forced sinusoidal waves (Floquet - Bloch waves for the discrete system) in such a system. With no assumption concerning the wave nature, we show that if the structure reduces the phase velocity, the wave localizes exponentially at the structure line, and the latter can expand the transmission range in the region of long waves. Based on a general solution presented in terms of non-specified Green’s functions, we consider the wave localization in some continuous elastic bodies and a regular lattice. We determine the localization-related frequency ranges and the localization degree in dependence on the frequency. While 2D-models are considered throughout the text, the axisymmetric localization phenomenon in the 3D-space is also mentioned. The dynamic field created in such a structured system by an external harmonic force is obtained consisting of three different parts: the localized wave, a diverging wave, and non-spreading oscillations. Expressions for the wave amplitudes and the energy fluxes in the waves are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.