Abstract

We show, through analytical theory and rigorous numerical calculations, that optical binding can organize a collection of particles into extended, periodic one-dimensional lattices. These lattices, as well as other optically bound structures, are shown to exhibit spatially localized vibrational eigenmodes. The origin of localization here is distinct from the usual mechanisms such as disorder, defect, or nonlinearity but is a consequence of the long-ranged nature of optical binding. For an array of particles trapped by an interference pattern, the stable configuration is often dictated by the external light source, but we observed that interparticle optical binding forces can have a profound influence on the dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.