Abstract
The length dependence of the Raman spectra and vibrational properties of biphenylene strips are explored using density functional theory. The Raman intensity of two bands increases and decreases with length due to the enlarging and shrinking of the proportion of effective vibrating units. The red shift of vibrational modes is observed with the increase in length, owing to the various vibrational characteristics of the effective vibrating units. More importantly, a linear relationship between the energy gap and the wavenumber of the shifting Raman bands is obtained. The results allow us to interpret the length-dependence of the Raman spectra from the perspective of localized vibrational characteristics and suggest that Raman spectroscopy can be used as a convenient method to determine the energy gap of nanomaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.