Abstract

How and where iron exits from ferritin for cellular use is unknown. Twenty-four protein subunits create a cavity in ferritin where iron is concentrated >10(11)-fold as a mineral. Proline substitution for conserved leucine 134 (L134P) allowed normal assembly but increased iron exit rates. X-ray crystallography of H-L134P ferritin revealed localized unfolding at the 3-fold axis, also iron entry sites, consistent with shared use sites for iron exit and entry. The junction of three ferritin subunits appears to be a dynamic aperture with a "shutter" that cytoplasmic factors might open or close to regulate iron release in vivo.

Highlights

  • How and where iron exits from ferritin for cellular use is unknown

  • When conserved leucine 134 was replaced by proline (L134P), the protein assembled, oxidized Fe(II), and mineralized Fe(III), but the time for complete dissolution of mineral (480 iron) in vitro was greatly decreased (5 min compared with 150 min for the parent protein)

  • X-ray diffraction studies of crystals of H-L134P ferritin showed a flexible region localized near the termini of two subunit helices (C, D), which form the interfaces of subunit trimers and a channel

Read more

Summary

A MECHANISM FOR IRON RELEASE?*

Hidenori Takagi‡§**, Dashuang Shi¶§, Ya Ha¶§, Norma M. Twenty-four protein subunits create a cavity in ferritin where iron is concentrated >1011-fold as a mineral. Proline substitution for conserved leucine 134 (L134P) allowed normal assembly but increased iron exit rates. Ferritins are vesicle-like assemblies of 24 polypeptide (4helix bundle) subunits that concentrate iron in cells by directing the formation of a ferric mineral in the hollow protein interior (8 nm diameter) [1,2,3]. When conserved leucine 134 was replaced by proline (L134P), the protein assembled, oxidized Fe(II), and mineralized Fe(III), but the time for complete dissolution of mineral (480 iron) in vitro was greatly decreased (5 min compared with 150 min for the parent protein). A possible mechanism for regulated iron release in vivo could be localized disorder in the assembled protein, enhanced by cytoplasmic changes with effects analogous to the effect of H-L134P

EXPERIMENTAL PROCEDURES
RESULTS
DISCUSSION
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.