Abstract
ZnO and ZnO/Ag films are grown on Si (111) substrates by rf magnetron sputtering at room temperature. After annealing, it is found that the ultraviolet (UV) emission of ZnO/Ag films strongly depends on the thickness of the initial internal Ag layer. During the annealing process, Ag nanoparticles are formed and diffused into the ZnO film. The resonant coupling between localized surface plasmons (LSPs) of Ag nanoparticles and ZnO enhances the UV emission. The largest UV enhancement over 12 times is found when the initial internal Ag layer is 10nm. It is also observed that the diffusion of Ag nanoparticles destroys the ZnO crystal quality in different grades, depending on the sizes of the Ag nanoparticles. The poor crystal quality induces bad UV emission. It is concluded that the UV emission is the result of the competition between the LSP enhancement and the thermal diffusion destroying effect from Ag nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.