Abstract

The conversion of CO2 into hydrocarbon fuels via the photocatalytic reaction route is considered a potential strategy to concurrently address serious energy crisis and greenhouse gas emission problems. Nevertheless, the generation of long-chain hydrocarbon products (Cn, n ≥ 2) from the visible-light-reactive photocatalytic CO2 reduction has also been considering a contemporary challenge. Herein, we indicate that Ag nanoparticles (Ag NPs) loaded gC3N4/ZnO nanorods heterojunction (Ag-gC3N4/ZnO NRs abbreviation) has extended photoactive range and enhanced specific surface area. The combination of Ag NPs and gC3N4/ZnO NRs significantly enhances photocatalytic CO2 reduction efficiency to form the acetone product. Detail, the acetone production efficiency of Ag-gC3N4/ZnO NRs is 8.4 and 7.5 times higher than pure ZnO NRs and gC3N4/ZnO NRs at the same condition, respectively. This study represents a potential approach toward higher-energy-value hydrocarbons production and greenhouse gas emission mitigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.