Abstract

A novel fiber-optic biosensor based on a localized surface plasmon coupled fluorescence (LSPCF) system is proposed and developed. This biosensor consists of a biomolecular complex in a sandwich format of <antibody/antigen/Cy5-antibody-gold nanoparticle (GNP)>. It is immobilized on the surface of an optical fiber where a <Cy5-antibody-GNP> complex forms the fluorescence probe and is produced by mixing Cy5-labeled antibody and protein A conjugated gold nanoparticles (Au-PA). The LSPCF is excited by localized surface plasmon on the GNP surface where the evanescent field is applied near the core surface of the optical fiber. At the same time, the fluorescence signal is detected by a photomultiplier tube located beside the unclad optical fiber with high collection efficiency. Experimentally, this novel LSPCF biosensor is able to detect mouse immunoglobulin G (IgG) at a minimum concentration of 1 pg/mL (7 fM) during the biomolecular interaction of the IgG with anti-mouse IgG. The analysis is expanded by a discussion of the amplification of the LSPCF intensity by GNP coupling, and overall, this LSPCF biosensor is confirmed experimentally as a biosensor with very high sensitivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.