Abstract

Protection standards for radiofrequency electromagnetic radiation are principally intended to avoid detrimental thermal effects. To this end the International Commission on Non-Ionizing Radiation Protection (ICNIRP), and national bodies such as the National Radiological Protection Board (NRPB), recommend limitations on the localized specific energy absorption rate (SAR) in various parts of the body. The role of numerical dosimetry is to estimate the SAR from measurable parameters such as external field strengths and total body currents. In recent years there have been significant advances in the sophistication of the anatomical models available, and in our knowledge of the electrical properties of the body tissues. Several groups, including NRPB, have developed mathematical phantoms from medical imaging data, such as MRI scans. It has been known for some time that under certain circumstances SAR restrictions may be violated in the ankle due to the concentration of current in a small area. In this paper the author presents calculations of the SAR distribution in a human leg in the high-frequency (HF) band. This band contains the human whole-body resonance frequency and therefore gives the strongest coupling of the body to the field. The present study uses a finite element model with variable mesh size, derived from a 2 mm resolution voxel phantom of the whole body. It also uses recently acquired data on the electrical properties of the tissues. The results are discussed in the light of the exposure standards promulgated by national and international bodies such as NRPB and ICNIRP, and it is shown that the basic SAR restrictions in the leg are ensured by a current reference level of 100 mA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.