Abstract
The Malaysian shoreline is dynamic and constantly changing in location. Although the shoreline may be mapped accurately from fine spatial resolution imagery, this is an impractical approach for use over large areas. An alternative approach using coarse spatial resolution satellite sensor imagery is to fit a shoreline boundary at sub‐pixel scale. This paper evaluates the use of soft classification and super‐resolution mapping techniques to accurately map the shoreline. A localized soft classification approach was used to provide an accurate prediction of the thematic composition of each image pixel. This involves the use of training statistics derived locally rather than globally in the classification. Using the derived class proportion information the shoreline boundary was determined within the pixels using super‐resolution techniques. Results show that by using a localized approach in the prediction of the pixel's thematic class composition, the accuracy of shoreline prediction was increased. Notably, the use of the localized approach resulted in the shoreline with an rms error of <1.51 m, smaller than the rms error of 2.13 m derived from the use of the global approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.