Abstract

Localized molecular self-assembly has been developed as an effective approach for the fabrication of spatially resolved supramolecular hydrogels, showing great potential for many high-tech applications. However, the fabrication of macroscopically structured supramolecular hydrogels through molecular self-assembly remains a challenge. Herein, we report on localized self-assembly of low molecular weight hydrogelators through a simple reaction-diffusion approach, giving rise to various macroscopically patterned supramolecular hydrogels. This is achieved on the basis of an acid-catalyzed hydrazone supramolecular hydrogelator system. The acid was pre-loaded in a polydimethylsiloxane (PDMS) substrate, generating a proton gradient in the vicinity of the PDMS surface after immersing the PDMS in the aqueous solution of the hydrogelator precursors. The acid dramatically accelerates the in situ formation and self-assembly of the hydrazone hydrogelators, leading to localized formation of supramolecular hydrogels. The growth rate of the supramolecular hydrogels can be easily tuned through controlling the concentrations of the hydrogelator precursors and HCl. Importantly, differently shaped supramolecular hydrogel objects can be obtained by simply changing the shapes of PDMS. This work suggests that reaction-diffusion-mediated localized hydrogelation can serve as an approach towards macroscopically structuralized supramolecular hydrogels, which may find potential applications ranging from tissue engineering to biosensors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.