Abstract

The failure mechanism of lead-free solder interconnections under thermal cycling has been studied by cross-polarized light microscopy, scanning electronic microscopy (SEM), and nanoindentation test. From the results of finite element modeling (FEM), it was found that the critical solder interconnection was located at the chip corner, and the stress was concentrated at the outer neck region beneath the ball grid arrays (BGA) component. The FEM results were in good agreement with the experimental observation. Two failure modes of the interconnections were identified: one is the intergranular or transgranular cracking through many small equiaxed recrystallized grains and the other is the transgranular cracking in few large irregularly shaped recrystallized grains. The results show that the localized recrystallization makes the Ag <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> Sn intermetallic compounds (IMC) coalesce and distribute sparsely, which leads to the degradation of the recrystallized microstructure and easy propagation of the cracks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.