Abstract
Abstract Coronal loops observed in soft X-rays and extreme ultraviolet imaging data offer direct evidence that coronal plasma is heated by some mechanism. That mechanism appears to energize a particular bundle of field lines somehow selected from the magnetized coronal volume. Magnetic reconnection localized to a patch within a coronal current sheet is one mechanism that would select a flux bundle at the same time it energized it. Since magnetic reconnection occurs preferentially at topological boundaries, we would expect to find coronal loops concentrated there if it were at work. We explore this hypothesis using a data set, previously compiled by McCarthy et al., consisting of 301 coronal loops interconnecting a pair of active regions over a 48 hr period. That work computed the three-dimensional geometries and magnetic field strengths for most of the loops. This revealed many bright loops lying at the periphery of the interconnecting flux domain, possibly created and energized by the reconnection that created the interconnecting flux. There were, however, many loops well inside the domain which would be difficult to attribute to that mode of reconnection. Here we use detailed magnetic models of the interconnecting domain to show that these internal loops tend to occur along internal boundaries: separatrices. This offers a novel form of evidence that coronal loops are the products of patchy reconnection even under quiescent conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.