Abstract

Localized proton NMR spectroscopy using stimulated echoes (STEAM) has been used to study metabolites in different proximal skeletal muscles of normal volunteers at rest. Single scan water-suppressed proton NMR spectra obtained at 1.5 and 2.0 T (Siemens Magnetom) from a 64-ml volume-of-interest (VOI) yield resonances due to triglycerides, phosphocreatine plus a minor contribution from creatine, and betaines comprising carnitine and choline-containing compounds. The observation of the pH-dependent resonances of carnosine required multiple acquisitions and echo times as short as 20 ms. T1 and T2 relaxation times of muscle metabolites were obtained by varying the repetition time and echo time of the STEAM sequence, respectively. Although rather long T2 values such as 180 ms for (phospho-) creatine correspond to natural resonance linewidths of only 2 Hz, the observed linewidths of typically 10-12 Hz are entirely determined by the short T2 relaxation times (25-30 ms) of the water protons used for shimming. The spectroscopic results from 24 muscle studies on 17 young male volunteers show remarkable intra- and interindividual differences in the absolute signal intensities of mobile lipids. Further metabolic variations were observed for the relative concentrations of betaines (by a factor of 2) and carnosine (by a factor of 3) when total creatine is assumed to be constant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call